Amérique du Sud novembre 1999

Partie A

Soit la fonction f définie sur] 0; + ∞ [par : $f(x) = x^2 + x - \frac{1 + \ln x}{x}$.

On désigne par C la courbe représentative de f dans un repère orthogonal ($O; \vec{i}, \vec{j}$).

Unités graphiques : 4 cm sur l'axe des abscisses, 2 cm sur l'axe des ordonnées.

- 1. On considère la fonction auxiliaire φ définie sur]0; $+\infty$ [par : $\varphi(x) = 2x^3 + x^2 + \ln x$.
- a. Étudier le sens de variations de φ.
- **b.** Démontrer que l'équation $\varphi(x) = 0$ a une solution unique qu'on appellera α. Trouver le nombre entier naturel p tel que : $p \times 10^{-2} \le \alpha < (p+1) \times 10^{-2}$.
- c. En déduire le signe de $\varphi(x)$ suivant les valeurs de x.
- **2.** a. Déterminer la limite de la fonction f en $+\infty$.
- **b.** Déterminer la limite de f en 0. Que peut-on en déduire pour la courbe représentative \mathbb{C} ?
- c. Étudier le sens de variations de f et dresser son tableau de variations.
- **d.** Soit la fonction g définie sur] 0; $+\infty$ [par $g(x) = x^2 + x$.

On appelle Γ sa courbe représentative dans le repère $(O; \vec{i}, \vec{j})$.

Préciser les positions relatives des courbes C et Γ .

e. Reproduire et compléter le tableau de valeurs suivant :

X	0,2	0,4	0,6	0,8	1	0,2	0,4	2	2,5
f(x)									

Les valeurs de f(x) seront données à 10^{-2} près.

f. Tracer C et Γ .

Partie B

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Unité graphique : 4 cm.

À tout point M d'affixe non nulle z, on associe le point M' d'affixe z' tel que : $z' = z^2 + z - \frac{1 + \ln|z|}{z}$.

On dit que M' est l'image de M.

1. On considère les points P et Q d'affixes respectives $e^{i\frac{\pi}{4}}$ et i.

Calculer les affixes des images P' et Q' de ces points. Placer P, Q, P' et Q'.

2. a. Δ est la demi-droite constituée des points d'affixe réelle strictement positive.

Soit M un point de Δ , d'affixe x. Quelle est l'affixe de son image M'?

- b. En utilisant le tableau des variations de la fonction f, indiquer la valeur de x pour laquelle l'abscisse de M' est minimum.
- c. Définir et représenter l'ensemble Δ ' des points M' lorsque M décrit la demi-droite Δ .
- 3. Le point *M* décrit maintenant le cercle E de centre O et de rayon 1.

On note θ un argument de z, θ décrivant $[-\pi; \pi]$.

- Montrer qu'une représentation paramétrique de l'ensemble E' des points M' est : $\begin{cases} x(\theta) = \cos 2\theta \\ y(\theta) = \sin 2\theta + 2\sin \theta \end{cases}$
- **b.** Que peut-on dire des points E' de paramètres respectifs θ et $-\theta$?

En déduire qu'il suffit de construire la partie E' correspondant à l'ensemble $[0; \pi]$ des valeurs de θ (partie qu'on désignera par E'_1 pour obtenir E'.

- **c.** Étudier conjointement les variations sur l'intervalle $[0; \pi]$ des fonctions x et y.
- **d.** Préciser les points d'intersection de E'₁ avec chacun des axes de coordonnées.
- e. Déterminer les points où E'_1 admet une tangente parallèle à l'un des axes de coordonnées. On admet qu'au point correspondant à la valeur π du paramètre, E'_1 admet une tangente parallèle à l'axe des abscisses.
- f. Tracer E' en utilisant avec précision les éléments obtenus précédemment.

CORRECTION

Partie A

1. a.
$$\varphi$$
 est définie dérivable sur] 0; $+\infty$ [et $\varphi'(x) = 6x^2 + 2x + \frac{1}{x}$.

x > 0 donc $\varphi'(x)$ est la somme de nombres strictement positifs donc $\varphi'(x) > 0$. φ est strictement croissante sur] 0; $+\infty$ [.

b.
$$\lim_{x \to 0^+} \ln x = -\infty \text{ donc } \lim_{x \to 0^+} \varphi(x) = -\infty$$

$$\varphi(x) = x^3 \left(2 + \frac{1}{x} + \frac{\ln x}{x^3} \right) \text{ or } \lim_{x \to +\infty} \frac{\ln x}{x^3} = 0 \text{ donc } \lim_{x \to +\infty} \left(2 + \frac{1}{x} + \frac{\ln x}{x^3} \right) = 2 \text{ et } \lim_{x \to +\infty} \varphi(x) = +\infty$$

La fonction φ est continue strictement croissante sur] 0; $+\infty$ [, $\varphi(]$ 0; $+\infty$ [) = \mathbb{R} , $0 \in \mathbb{R}$ donc l'équation $\varphi(x) = 0$ a une solution unique α .

 $\varphi(0,54) \approx -0.01$ et $\varphi(0,55) \approx 0.04$ or φ est strictement croissante sur] 0; + ∞ [donc $0.54 < \alpha < 0.55$ donc p = 54

c.
$$\varphi$$
 est strictement croissante sur] 0 ; $+\infty$ [et $\varphi(\alpha) = 0$ donc : si $x \in$] 0 ; α [, $\varphi(x) < 0$; si $x = \alpha$ alors $\varphi(x) = 0$ et si $x \in$] α ; $+\infty$ [, alors $\varphi(x) > 0$

2. a.
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
 donc $\lim_{x \to +\infty} f(x) = +\infty$.

b.
$$f(x) = x^2 + x - \frac{1}{x}(1 + \ln x)$$
 or $\lim_{x \to 0^+} \ln x = -\infty$ et $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ donc $\lim_{x \to 0^+} -\frac{1}{x}(1 + \ln x) = +\infty$

 $\lim_{x \to 0} f(x) = +\infty$ la courbe représentative C admet pour asymptote la droite d'équation x = 0.

c.
$$f'(x) = 2x + 1 - \frac{\frac{1}{x} \times x - 1(1 + \ln x)}{x^2}$$
 donc $f'(x) = 2x + 1 - \frac{1 - 1 - \ln x}{x^2}$

$$f'(x) = 2x + 1 + \frac{\ln x}{x^2}$$
 donc $f'(x) = \frac{2x^3 + x^2 + \ln x}{x^2} = \frac{\varphi(x)}{x^2}$ donc $f'(x)$ a le même signe que $\varphi(x)$.

	Λ Λ		
x	0	α	$+\infty$
f'(x)		0	
f	+ ∞	$f(\alpha)$	+

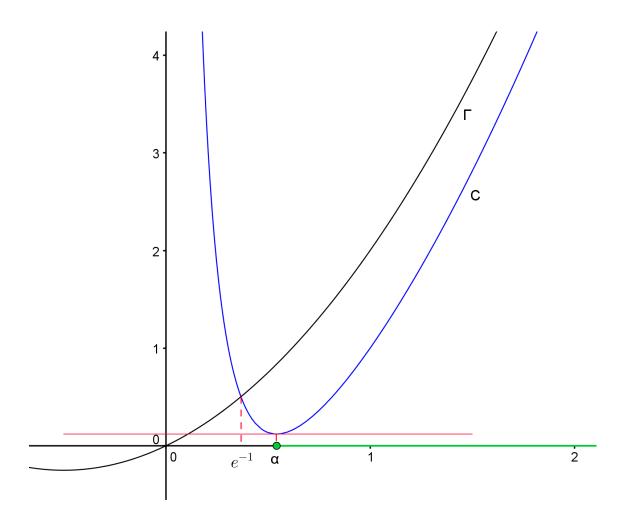
d.
$$f(x) - g(x) = \frac{1 + \ln x}{x}$$
; $1 + \ln x > 0 \Leftrightarrow \ln x > -1 \Leftrightarrow x > e^{-1}$

x ()	e ⁻¹	$+\infty$		
f(x) - g(x)	_	0	+		
position relative	C au dessus de Γ	point d'intersection	C en dessous de Γ		

e.

х	0,2	0,4	0,6	0,8	1	0,2	0,4	2	2,5
f(x)	3,29	0,35	0,14	0,47	1,	3,29	0,35	5,15	7,98

f.



Partie B

Le plan complexe est rapporté à un repère orthonormé direct ($O; \vec{u}, \vec{v}$) . Unité graphique : 4 cm.

À tout point M d'affixe non nulle z, on associe le point M ' d'affixe z' tel que : $z' = z^2 + z - \frac{1 + \ln|z|}{z}$.

On dit que M' est l'image de M.

On considère les points P et Q d'affixes respectives $e^{i\frac{\pi}{4}}$ et i.

1. P' a pour affixe
$$\left(e^{i\frac{\pi}{4}}\right)^2 + e^{i\frac{\pi}{4}} - \frac{1+\ln\left|e^{i\frac{\pi}{4}}\right|}{e^{i\frac{\pi}{4}}}$$

 $e^{i\frac{\pi}{4}}$ est un complexe de module 1 donc 1+ln $\left| e^{i\frac{\pi}{4}} \right| = 1$ donc l'affixe de P' est $e^{i\frac{\pi}{2}} + e^{i\frac{\pi}{4}} - e^{-i\frac{\pi}{4}}$

$$soit \ i + \frac{\sqrt{2}}{2} + i \, \frac{\sqrt{2}}{2} - \left(\, \, \frac{\sqrt{2}}{2} + i \, \frac{\sqrt{2}}{2} \, \, \right) \, soit \, (1 + \sqrt{2}) \, i$$

Q' a pour affixe
$$i^2 + i - \frac{1 + \ln|i|}{i}$$

 $i \ est \ un \ complexe \ de \ module \ 1 \ donc \ \frac{1+\ln|i|}{i} = \frac{1}{i} = -i \ donc \ l'affixe \ de \ P' \ est \ -1 \ +i \ +i \ = -1 \ +2 \ i$

2. a. Δ est la demi-droite constituée des points d'affixe réelle strictement positive.

$$M$$
' a pour affixe $x^2 + x - \frac{1 + \ln|x|}{x}$ or $x > 0$ donc $|x| = x$ donc M ' a pour affixe $f(x)$

- **b.** D'après le tableau des variations de la fonction f, l'abscisse de M est minimum pour $x = \alpha$.
- c. l'ensemble Δ ' des points M' lorsque M décrit la demi-droite Δ est l'ensemble des points d'affixe f(x) donc de coordonnées (f(x); 0) or pour tout x > 0, $f(x) \ge \alpha$ donc Δ ' est la partie de l'axe des réels telle que l'abscisse soit supérieure à α (en vert sur le graphique).

Le point M décrit le cercle E de centre O et de rayon 1 donc il existe un réel θ décrivant $[-\pi; \pi]$ tel que l'affixe de M est

a.
$$M$$
' a pour affixe $e^{i\theta} + e^{i\theta} e^{i\frac{\pi}{4}} - \frac{1 + \ln |e^{i\theta}|}{e^{i\theta}}$

 $e^{i\theta}$ $e^{i\frac{\pi}{4}}$ est un complexe de module 1 donc 1+ln $\left| e^{i\theta} \right| = 1$ donc l'affixe de M' est $e^{2i\theta} + e^{i\theta} - e^{-i\theta}$

soit cos 2 θ + i sin 2 θ + 2 cos θ donc l'ensemble E' des points M 'est : $\begin{cases} x(\theta) = \cos 2\theta \\ y(\theta) = \sin 2\theta + 2\sin \theta \end{cases}, \theta \text{ décrivant } [-\pi; \pi].$

b. Soit M_{$$\theta$$} le point de E' de paramètre θ , M _{θ} a pour coordonnées
$$\begin{cases} x(\theta) = \cos 2\theta \\ y(\theta) = \sin 2\theta + 2\sin \theta \end{cases}$$

b. Soit
$$M_{\theta}$$
 le point de E' de paramètre θ , M_{θ} a pour coordonnées
$$\begin{cases} x(\theta) = \cos 2\theta \\ y(\theta) = \sin 2\theta + 2\sin \theta \end{cases}$$

$$M_{-\theta}$$
 le point de E' de paramètre $-\theta$, $M_{-\theta}$ a pour coordonnées
$$\begin{cases} x(-\theta) = \cos (-2\theta) \\ y(-\theta) = \sin (-2\theta) + 2\sin (-\theta) \end{cases}$$
 soit
$$\begin{cases} x(-\theta) = \cos 2\theta \\ y(-\theta) = -\sin 2\theta - 2\sin \theta \end{cases}$$

 M_{θ} et $M_{-\theta}$ ont la même abscisse et des ordonnées opposées doc sont symétriques par rapport à l'axe des réels.

Il suffit de construire la partie E' correspondant à l'ensemble $[0; \pi]$ des valeurs de θ puis par symétrie par rapport à l'axe des réels on obtient la partie correspondant à $\theta \in [-\pi; \pi]$.

c.
$$x'(\theta) = -2 \sin 2\theta$$
, si $\theta = 0$ ou $\theta = \frac{\pi}{2}$ ou $\theta = \pi$ alors sin $2\theta = 0$

si
$$\theta \in \left[0; \frac{\pi}{2}\right[$$
, $\theta \in \left[0; \pi\right[$ donc sin $\theta > 0$ donc $\theta < 0$;

$$si \; \theta \in \left[\frac{\pi}{2}; \pi \right[, 2 \; \theta \in] \; \pi; 2 \; \pi \; [\; donc \; sin \; 2 \; \theta < 0 \; donc \; x'(\theta) > 0;$$

$$y'(\theta) = 2\cos 2\theta + 2\cos \theta = 2[\cos 2\theta + \cos \theta] = 2[2\cos^2\theta + \cos\theta - 1]$$

- 1 est solution de $2x^2 + x - 1 = 0$ donc $2x^2 + x - 1 = (x + 1)(2x - 1)$

- 1 est solution de
$$2x^2 + x - 1 = 0$$
 donc $2x^2 + x - 1 = (x + 1)(2x - 1)$

$$y'(\theta) = 2(\cos \theta + 1)(2\cos \theta - 1)$$

si
$$\theta = \frac{\pi}{3}$$
, $\cos \theta = \frac{1}{2}$ donc $2 \cos \theta - 1 = 0$

$$si \; \theta \in \left[\; 0 \; ; \frac{\pi}{3} \left[\; , \; \frac{1}{2} < \cos \theta \leq 1 \; donc \; 2 \; \cos \theta - 1 > 0 \; ; \\ si \; \theta \in \; \left[\; \frac{\pi}{3} \; ; \pi \; \right] , \; -1 \leq \; \cos \theta < \frac{1}{2} \; donc \; 2 \; \cos \theta - 1 < 0 \; donc \; 2 \; d$$

pour tout
$$\theta \in [0; \pi[, \cos \theta > -1 \text{ donc } \cos \theta + 1 > 0]$$

si
$$\theta = \pi$$
 alors $\cos \theta = -1$ donc $\cos \theta + 1 = 0$

)($080 \pm 1 - 0$					
	θ	0		$\frac{\pi}{3}$		π
	$2\cos\theta-1$	0	+	0	_	
	$\cos \theta + 1$		+		+	0
	ν'(θ)	0	+	0	_	0

θ	0		$\frac{\pi}{3}$		$\frac{\pi}{2}$		π
$x'(\theta)$	0	_		_	0	+	0
x	1		$\frac{1}{2}$		→ -1		→ 1
у	0 -		$\frac{3\sqrt{3}}{2}$		2		> 0
3(0)	0		0				0

Préciser les points d'intersection de E'₁ avec chacun des axes de coordonnées.

E'₁ coupe l'axe des abscisses quand $\theta \in [0; \pi]$ et $\sin 2\theta + 2\sin \theta = 0 \Leftrightarrow \theta \in [0; \pi]$ et $2\sin \theta\cos \theta + 2\sin \theta = 0$

$$\Leftrightarrow \theta \in [0; \pi] \text{ et } 2 \sin \theta (\cos \theta + 1) = 0 \Leftrightarrow \theta = 0 \text{ ou } \theta = \pi$$

or le point de paramètre $\theta = 0$ et le point de paramètre $\theta = \pi$, sont confondus : il s'agit du point O(0; 0).

E'₁ coupe l'axe des ordonnées quand $\theta \in [0; \pi]$ et $\cos 2\theta = 0 \Leftrightarrow 2\theta \in [0; 2\pi]$ et $2\theta = \frac{\pi}{2} + k\pi \Leftrightarrow 2\theta = \frac{\pi}{2}$ ou $2\theta = \frac{3\pi}{2}$

$$\Leftrightarrow \theta = \frac{\pi}{4} \text{ ou } \theta = \frac{3 \pi}{4}$$

Le point de paramètre $\theta = \frac{\pi}{4}$ a pour ordonnée $y = \sin \frac{\pi}{2} + 2 \sin \frac{\pi}{4} = 1 + \sqrt{2}$

Le point de paramètre $\theta=\frac{3\pi}{4}$, a pour ordonnée $y=\sin\frac{3\pi}{2}+2\sin\frac{3\pi}{4}=-1+\sqrt{2}$ E'₁ coupe l'axe des ordonnées en A (0 , 1 + $\sqrt{2}$) et B (0 ; -1 + $\sqrt{2}$).

e. La tangente au point M de paramètre θ , $\theta \in [0; \pi]$ a pour vecteur directeur $\vec{t} = x'(\theta) \vec{i} + y'(\theta) \vec{j}$ quand $x'(\theta)$ et $y'(\theta)$ ne sont pas simultanément nuls donc quand $\theta \neq 0$ et $\theta \neq \pi$

Il est admis qu'au point correspondant à la valeur π du paramètre, E'_1 admet une tangente parallèle à l'axe des abscisses. et qu'au point correspondant à la valeur 0 du paramètre, E'_1 admet une tangente parallèle à l'axe des ordonnées.

$$x'(\theta) \vec{i} + y'(\theta) \vec{j} = -2 \sin 2\theta \vec{i} + 2 (\cos \theta + 1) (2 \cos \theta - 1) \vec{j}$$

Le vecteur \vec{t} est colinéaire à \vec{i} si et seulement si $\theta \in]0$; $\pi [$ et $2(\cos \theta + 1)(2\cos \theta - 1) = 0$ soit si et seulement si $\theta = \frac{\pi}{3}$.

donc en C(1;0) et en $D\left(-\frac{1}{2};\frac{3\sqrt{3}}{2}\right)$, E_1 admet une tangente parallèle à l'axe des abscisses.

Le vecteur est \vec{t} colinéaire à \vec{j} si et seulement si $\theta \in \]\ 0\ ;\ \pi\ [$ et sin $\ 2\ \theta = 0$ soit si et seulement si $\ \theta \in \]\ 0\ ;\ \pi\ [$ et $\ 2\ \theta = k\ \pi$ soit $\ \theta = \frac{\pi}{2}$, donc en F (-1; 2), E'_1 admet une tangente parallèle à l'axe des ordonnées.

f.

	θ	0,0	0,2	0,4	0,6	0,8	$\frac{\pi}{3}$	1,2	1,4	$\frac{\pi}{2}$	1,8	2,0	2,2	2,4	2,6	2,8	π
	$x(\theta)$	1	0,9	0,7	0,4	0	-0,5	-0,7	-0,9	- 1	-0,9	-0,7	-0,3	0,1	0,5	0,8	1
Γ	y(θ)	0	0,8	1,5	2,1	2,4	2,6	2,5	2,3	2	1,5	1,1	0,7	0,4	0,1	0,04	0

