ANTILLES - GUYANE SEPTEMBRE 2006

On se propose de déterminer des valeurs approchées de l'intégrale $I = \int_0^{\frac{1}{2}} \frac{10 t^2}{1 + t^2} dt$ en utilisant deux méthodes distinctes.

Les parties A et B sont largement indépendantes l'une de l'autre.

PARTIE A

Utilisation d'une intégration par parties

- 1. En remarquant que $\frac{10 t^2}{1+t^2} = 5 t \times \frac{2 t}{1+t^2}$, établir l'égalité $I = \frac{5}{2} \ln \left(\frac{5}{4} \right) 5 \int_0^{\frac{1}{2}} \ln (1+t^2) dt$
- 2. On pose, pour *x* positif ou nul, $f(x) = \ln(1+x) x + \frac{x^2}{2}$ et $g(x) = \ln(1+x) x$.
- **a.** En utilisant les variations de f, démontrer que $f(x) \ge 0$. En procédant de la même façon, on pourrait établir que $g(x) \ge 0$, inégalité que l'on admettra ici.
- **b.** À l'aide de ce qui précède, montrer que l'encadrement : $t^2 \frac{t^4}{2} \le \ln(1 + t^2) \le t^2$ est vrai pour tout réel t.
- c. Déduire de la question précédente que $-\frac{5}{24} \le -5 \int_0^{\frac{1}{2}} \ln (1+t^2) dt \le -\frac{37}{192}$
- **3.** En utilisant les questions précédentes, donner un encadrement d'amplitude inférieure à 0,02 de I par des nombres décimaux ayant trois chiffres après la virgule.

PARTIE B

Utilisation de la méthode d'Euler

- 1. On pose $\varphi(x) = \int_0^x \frac{10 t^2}{1 + t^2} dt$ pour $x \in \left[0; \frac{1}{2}\right]$.
 - Préciser $\varphi(0)$ ainsi que la fonction dérivée de φ .
- 2. On rappelle que la méthode d'Euler permet de construire une suite de points $M_n(x_n; y_n)$ proches de la courbe représentative de φ. En choisissant comme pas h = 0,1, on obtient la suite de points M_n définie pour n entier naturel par :

$$\begin{cases} x_0 = 0 \\ y_0 = 0 \end{cases} \text{ et } \begin{cases} x_{n+1} = x_n + 0.1 \\ y_{n+1} = y_n + \varphi'(x_n) \times 0.1 \end{cases}$$

- En utilisant, sans la justifier, l'égalité $x_n = \frac{n}{10}$, vérifier que $y_{n+1} = y_n + \frac{n^2}{100 + n^2}$.
- **3.** Calculer y_1 , et y_2 , puis exprimer y_3 , y_4 et y_5 sous la forme d'une somme de fractions que l'on ne cherchera pas à simplifier. Donner maintenant une valeur approchée à 0,001 près de y_5 .
- Le réel x_5 étant égal à $\frac{1}{2}$, y_5 est donc une valeur approchée de $\varphi\left(\frac{1}{2}\right)$ c'est-à-dire de I.
- **4.** Avec la méthode d'Euler au pas h = 0.01, on obtient, pour I, la valeur approchée 0.354. Les valeurs de I obtenues avec la méthode d'Euler sont-elles compatibles avec l'encadrement de la question 3. de la partie A?

CORRECTION

Partie A

1.
$$\frac{10 t^2}{1+t^2} = 5 t \times \frac{2 t}{1+t^2}$$

soit
$$u'(t) = \frac{2t}{1+t^2}$$
 alors $u'(t) = \ln(1+t^2)$

$$v(t) = 5 t \text{ donc } v'(t) = 5 \text{ donc par intégration par parties} : I = \left[5 t \ln (1 + t^2) \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} 5 \ln (1 + t^2) dt$$

$$I = \frac{5}{2} \ln \left(\frac{5}{4} \right) - 5 \int_0^{\frac{1}{2}} \ln (1 + t^2) dt$$

2. a.
$$f$$
 est définie dérivable sur $[0; +\infty[, f'(x) = \frac{1}{1+x}, -1 + x = \frac{x^2}{1+x}]$

$$x \ge 0$$
 donc $f'(x) \ge 0$ donc f est croissante sur $[0; +\infty[$

$$f(0) = 0$$
 donc si $x \ge 0, f(x) \ge f(0)$ soit $f(x) \ge 0$ donc pour tout $x \ge 0$, $\ln(1+x) \ge x - \frac{x^2}{2}$

g est définie dérivable sur [0; +
$$\infty$$
 [et $g'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x}$

$$x \ge 0$$
 donc $g'(x) \le 0$ donc g est décroissante sur $[0; +\infty]$

$$g(0) = 0$$
 donc si $x \ge 0$, $g(x) \le g(0)$ soit $g(x) \le 0$ donc pour tout $x \ge 0$, $\ln(1 + x) \le x$.

soit pour tout
$$x \ge 0$$
, $x - \frac{x^2}{2} \le \ln(1+x) \le x$.

- 2. b. Soit t un réel quelconque, $t^2 \ge 0$ donc en appliquant la relation précédente à t^2 : pour tout t réel : $t^2 \frac{t^4}{2} \le \ln(1 + t^2) \le t^2$
- 2. c. pour tout t réel : $t^2 \frac{t^4}{2} \le \ln(1+t^2) \le t^2$

Les fonctions intervenant dans cette inégalité sont continues sur \mathbb{R} , et $0 \le \frac{1}{2}$ donc $\int_0^{\frac{1}{2}} \left(t^2 - \frac{t^4}{2} \right) dt \le \int_0^{\frac{1}{2}} \ln (1 + t^2) dt \le \int_0^{\frac{1}{2}} t^2 dt$

soit
$$\left[\frac{t^3}{3} - \frac{t^5}{10}\right]_0^{\frac{1}{2}} \le \int_0^{\frac{1}{2}} \ln(1+t^2) dt \le \left[\frac{t^3}{3}\right]_0^{\frac{1}{2}} donc \frac{1}{24} - \frac{1}{320} \le \int_0^{\frac{1}{2}} \ln(1+t^2) dt \le \frac{1}{24}$$

$$\frac{37}{960} \le \int_0^{\frac{1}{2}} \ln(1+t^2) dt \le \frac{1}{24} \operatorname{donc} -\frac{37}{192} \ge -5 \int_0^{\frac{1}{2}} \ln(1+t^2) dt \ge -\frac{5}{24}$$

3.
$$I = \frac{5}{2} \ln \left(\frac{5}{4} \right) - 5 \int_0^{\frac{1}{2}} \ln (1 + t^2) dt$$

donc
$$\frac{5}{2} \ln \left(\frac{5}{4} \right) - \frac{37}{192} \ge \frac{5}{2} \ln \left(\frac{5}{4} \right) - 5 \int_0^{\frac{1}{2}} \ln (1 + t^2) dt \ge \frac{5}{2} \ln \left(\frac{5}{4} \right) - \frac{5}{24}$$

soit
$$\frac{5}{2} \ln \left(\frac{5}{4} \right) - \frac{37}{192} \ge I \ge \frac{5}{2} \ln \left(\frac{5}{4} \right) - \frac{5}{24}$$

 $0.349 \le I \le 0.366$

0,366 - 0,349 = 0,17 donc I est bien encadré par deux nombres décimaux ayant 3 chiffres après la virgule, et l'encadrement a une amplitude inférieure à 0,02

PARTIE B

1. La fonction $\psi: t \to \frac{10 t^2}{1+t^2}$ est définie continue sur $\left[0; \frac{1}{2}\right]$ donc φ est la primitive nulle en 0 de ψ sur $\left[0; \frac{1}{2}\right]$.

 φ est dérivable sur $\left[0; \frac{1}{2}\right]$ et $\varphi'(x) = \frac{10 x^2}{1 + x^2}$.

2.
$$y_{n+1} = y_n + \frac{10 x_n^2}{1 + x_n^2} \times 0.1 = y_n + \frac{n^2}{100 + n^2}$$

3.
$$y_1 = y_0 + \frac{0^2}{100 + 0^2} = 0 \text{ donc } y_2 = y_1 + \frac{1^2}{100 + 1^2} = \frac{1}{101}$$

$$y_3 = y_2 + \frac{2^2}{100 + 2^2} = \frac{1}{101} + \frac{4}{104} = \frac{508}{10504}$$

$$y_4 = y_3 + \frac{3^2}{100 + 3^2} = \frac{508}{10504} + \frac{9}{109} = \frac{149908}{1144936}$$

$$y_5 = y_4 + \frac{4^2}{100 + 4^2} = \frac{149\,908}{1144\,936} + \frac{16}{116} = \frac{35\,708\,304}{132\,812\,576}$$

 $y_5 \approx 0.269$

4. Avec un pas de 0,1 ; $y_5 \approx 0,269$ or la partie A dit que 0,349 \leq I \leq 0,366 donc les valeurs de I obtenues par la méthode d'Euler ne sont pas compatibles avec les résultats de la partie A.

avec un pas de 0,1, $y_5 \approx 0,354$ donc les valeurs de I obtenues par la méthode d'Euler sont compatibles avec les résultats de la partie A.