n est un entier naturel supérieur ou égal à 2.

- 1. Montrer que n et 2 n + 1 sont premiers entre eux.
- **2.** On pose $\alpha = n + 3$ et $\beta = 2$ n + 1 et on note δ le PGCD de α et β .
- a. Calculer 2 α β et en déduire les valeurs possibles de δ.
- **b.** Démontrer que α et β sont multiples de 5 si et seulement si (n-2) est multiple de 5.
- 3. On considère les nombres a et b définis par : $a = n^3 + 2n^2 3n$ et $b = 2n^2 n 1$ Montrer, après factorisation, que a et b sont des entiers naturels divisibles par (n - 1).
- **4.** a. On note d le PGCD de n(n+3) et de (2n+1). Montrer que δ divise d, puis que $\delta = d$.
- **b.** En déduire le PGCD, Δ , de a et b en fonction de n.
- c. Application:

Déterminer Δ pour n = 2 001;

Déterminer Δ pour n = 2 002.

CORRECTION

- 1. $(2 n + 1) 2 \times n = 1$ donc d'après le théorème de Bézout, n et 2 n + 1 sont premiers entre eux.
- **2.** On pose $\alpha = n + 3$ et $\beta = 2$ n + 1 et on note δ le PGCD de α et β .
- a. $2 \alpha \beta = 2 (n+3) (2 n + 1) = 5$,

 δ divise α et β donc δ divise 2 α – β donc δ divise 5, δ > 0 donc les valeurs possibles de δ sont 1 et 5.

- **b.** α et β multiples de 5 \Leftrightarrow $\begin{cases} n+3\equiv 0 \ [5]. \\ 2n+1\equiv 0 \ [5] \end{cases} \Leftrightarrow \begin{cases} n\equiv -3 \ [5]. \\ 2n\equiv -1 \ [5] \end{cases} \Leftrightarrow \begin{cases} n-2\equiv -5 \ [5]. \\ 2n-4\equiv -5 \ [5] \end{cases} \Leftrightarrow \begin{cases} n-2\equiv 0 \ [5]. \\ 2(n-2)\equiv 0 \ [5] \end{cases} \Leftrightarrow n-2\equiv 0 \ [5].$ α et β sont multiples de 5 si et seulement si (n-2) est multiple de 5.
- 3. $a = n (n^2 + 2n 3) = n (n 1) (n + 3)$ $b = 2 n^2 - n - 1 = (n - 1) (2n + 1)$

 $n \ge 2$ donc $n-1 \ge 1$ donc a et b sont des entiers naturels divisibles par (n-1).

4. *a*. d = PGCD[n(n+3); (2n+1)] donc d divise <math>2n+1 et d divise n(n+3) n et 2n+1 sont premiers entre eux donc d divise n+3 d divise n+3 et 2n+1 donc d divise δ

 δ divise n + 3 et 2n + 1 donc δ divise n (n + 3) et de (2n + 1) donc δ divise d, d > 0 et $\delta > 0$ donc $d = \delta$.

- **b.** $\Delta = (n-1)$ PGCD [n(n+3); (2n+1)] = (n-1) d n-2 est divisible par $5 \Leftrightarrow \alpha$ et β sont multiples de 5 donc $\delta = d = 5$ dans tous les autres cas, δ divise 5 et est différent de 5 donc $\delta = d = 1$ si n = 5 k + 2 alors d = 5 donc $\Delta = 5$ (n-1) si $n \neq 5$ k + 2 alors d = 1 donc $\Delta = (n-1)$
- *c*. Application :

 $n = 2\ 001 = 5\ k + 1\ donc\ PGCD(a; b) = 1$ $n = 2\ 002 = 5\ k + 2\ donc\ PGCD(a; b) = 5$