EXERCICE 1: (6 points)

a) Remplir le tableau suivant :

x en radians	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos\left(x+\frac{\pi}{2}\right)$				
cos (4x)				

b) On donne
$$\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}(\sqrt{3}-1)}{4}$$
.

Calculer
$$\sin\left(\frac{11\,\pi}{12}\right)$$
, $\sin\left(\frac{25\,\pi}{12}\right)$, $\sin\left(\frac{23\,\pi}{12}\right)$, $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{-7\,\pi}{12}\right)$.

EXERCICE 2: (10 points)

Soit **BOC** un triangle isocèle de sommet **O** tel que (\overrightarrow{OC} ; \overrightarrow{OB}) = $\frac{2\pi}{3}$. Soit **D** le symétrique de **B** par rapport à la droite (**OC**) et **H** le milieu de [**BD**].

- 1. Faire une figure.
- 2. Donner la mesure principale des angles orientés suivants. Chaque réponse sera soigneusement expliquée.
 - a) $(\overrightarrow{CB}; \overrightarrow{CO})$

c) $(\overrightarrow{BH}; \overrightarrow{BC})$ d) $(\overrightarrow{CB}; \overrightarrow{DO})$

- b) $(\overrightarrow{OB}; \overrightarrow{BC})$
- 3. On pose OB = 1.

Calculer les longueurs BH, OH, HC et BC. La réponse devra être détaillée.

EXERCICE 3: (4 points)

Soit x un nombre réel quelconque.

Exprimer uniquement en fonction de $\cos x$ et $\sin x$ la quantité A suivante.

$$A = \sin\left(x + \frac{\pi}{2}\right) - 2\sin\left(\frac{3\pi}{2} - x\right) + \cos\left(x + \frac{3\pi}{2}\right) - 5\cos\left(-x - \frac{\pi}{2}\right) + 2\sin\left(-x + \frac{\pi}{2}\right) + 4\sin(\pi - x) + \cos\left(x + \frac{\pi}{2}\right)$$