Métropole 23 juin 2009

EXERCICE 1 4 points

Commun à tous les candidats

Les deux questions de cet exercice sont indépendantes.

1. On considère la suite (u_n) définie par : $u_0 = 1$ et, pour tout nombre entier naturel n, $u_{n+1} = \frac{1}{3}u_n + 4$.

On pose, pour tout nombre entier naturel n, $v_n = u_n - 6$.

- **a.** Pour tout nombre entier naturel n, calculer v_{n+1} en fonction de v_n . Quelle est la nature de la suite (v_n) ?
- **b.** Démontrer que pour tout nombre entier naturel n, $u_n = -5\left(\frac{1}{3}\right)^n + 6$.
- c. Étudier la convergence de la suite (un).
- 2. On considère la suite (w_n) dont les termes vérifient, pour tout nombre entier n > 1:

$$n w_n = (n + 1) w_{n-1} + 1$$
 et $w_0 = 1$.

Le tableau suivant donne les dix premiers termes de cette suite.

w_0	w_1	w 2	W 3	w_4	W 5	w 6	w 7	W 8	W 9
1	3	5	7	9	11	13	15	17	19

- **a.** Détailler le calcul permettant d'obtenir w_{10} .
- **b.** Dans cette question toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Donner la nature de la suite (w_n) . Calculer w_{2009} .

EXERCICE 2 6 points Commun à tous les candidats

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = \ln(1 + x e^{-x})$.

On note f' la fonction dérivée de la fonction f sur l'intervalle $[0; +\infty[$.

On note C la courbe représentative de la fonction f dans un repère orthogonal. La courbe C est représentée en annexe 1 (à rendre avec la copie).

PARTIE I

- **1.** Justifier que $\lim_{x \to +\infty} f(x) = 0$.
- 2. Justifier que pour tout nombre réel positif x, le signe de f'(x) est celui de 1 x.
- **3.** Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.

PARTIE II

Soit λ un nombre réel strictement positif. On pose $A(\lambda) = \int_0^{\lambda} f(x) dx$. On se propose de majorer $A(\lambda)$ à l'aide de deux méthodes différentes.

1. Première méthode

- a. Représenter, sur l'annexe jointe (à rendre avec la copie), la partie du plan dont l'aire en unité d'aire, est égale à $A(\lambda)$.
- **b.** Justifier que pour tout nombre réel λ strictement positif, $A(\lambda) \le \lambda f(1)$.

2. Deuxième méthode

- a. Calculer à l'aide d'une intégration par parties $\int_0^\lambda x e^{-x} dx$ en fonction de λ.
- **b.** On admet que pour tout nombre réel positif u, $ln(1 + u) \le u$.

Démontrer alors que, pour tout nombre réel λ strictement positif, $A(\lambda) \le -\lambda e^{-\lambda} - e^{-\lambda} + 1$.

3. Application numérique

Avec chacune des deux méthodes, trouver un majorant de A(5), arrondi au centième. Quelle méthode donne le meilleur majorant dans le cas où $\lambda = 5$?

EXERCICE 3 5 points Commun à tous les candidats

I. Cette question est une restitution organisée de connaissances.

On rappelle que si n et p sont deux nombres entiers naturels tels que $p \le n$ alors $\binom{n}{p} = \frac{n!}{p!(n-p)!}$.

Démontrer que pour tout nombre entier naturel p et pour tout nombre entier naturel p tels que $1 \le p \le n$ on a :

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}.$$

- **II.** Un sac contient 10 jetons indiscernables au toucher : 7 jetons blancs numérotés de 1 à 7 et 3 jetons noirs numérotés de 1 à 3. On tire simultanément deux jetons de ce sac.
- **1.** a. On note A l'évènement « obtenir deux jetons blancs ».

Démontrer que la probabilité de l'évènement A est égale à $\frac{7}{15}$.

- **b.** On note B l'évènement « obtenir deux jetons portant des numéros impairs ». Calculer la probabilité de B.
- c. Les évènements A et B sont-ils indépendants ?
- 2. Soit X la variable aléatoire prenant pour valeur le nombre de jetons blancs obtenus lors de ce tirage simultané.

1

- a. Déterminer la loi de probabilité de X.
- **b.** Calculer l'espérance mathématique de X.

EXERCICE 45 points Candidats n'ayant pas suivi l'enseignement de spécialité

Dans le plan complexe muni d'un repère orthonormal direct $(O; \vec{u}, \vec{v})$, on associe à tout point M d'affixe z non nulle, le point M' milieu du segment $[M M_1]$ où M_1 est le point d'affixe $\frac{1}{z}$. Le point M' est appelé l'image du point M.

- **1.** *a*. Montrer que les distances OM et OM₁ vérifient la relation OM × OM₁ = 1 et que les angles $(\vec{u}, \overrightarrow{OM_1})$ et $(\vec{u}, \overrightarrow{OM})$ vérifient l'égalité des mesures suivantes $(\vec{u}, \overrightarrow{OM_1}) = -(\vec{u}, \overrightarrow{OM})$ à 2π près.
- **b.** Sur la figure donnée en annexe 2 (à rendre avec la copie) le point A appartient au cercle de centre O et de rayon 2. Construire le point A' image du point A. (On laissera apparents les traits de construction).
- **2.** a. Justifier que pour tout nombre complexe z non nul, le point M' a pour affixe $z' = \frac{1}{2} \left(z + \frac{1}{z} \right)$.
- **b.** Soient B et C les points d'affixes respectives 2 i et -2 i. Calculer les affixes des points B' et C' images respectives des points B et C.
- c. Placer les points B, C, B' et C' sur la figure donnée en annexe 2 (à rendre avec la copie).
- 3. Déterminer l'ensemble des points M tels que M' = M.
- **4.** Dans cette question, toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Montrer que si le point M appartient au cercle de centre O et de rayon 1 alors son image M' appartient au segment [KL] où K et L sont les points d'affixes respectives -1 et 1.

EXERCICE 4 5 points Candidats ayant suivi l'enseignement de spécialité

Les trois questions de cet exercice sont indépendantes.

- **1. a.** Déterminer l'ensemble des couples (x, y) de nombres entiers relatifs, solution de l'équation (E): 8x 5y = 3.
- **b.** Soit m un nombre entier relatif tel qu'il existe un couple (p, q) de nombres entiers vérifiant m = 8 p + 1 et m = 5 q + 4. Montrer que le couple (p, q) est solution de l'équation (E) et en déduire que $m \equiv 9$ (modulo 40).
- c. Déterminer le plus petit de ces nombres entiers m supérieurs à 2 000.
- 2. Soit *n* un nombre entier naturel.
- a. Démontrer que pour tout nombre entier naturel k on a : $2^{3k} \equiv 1 \pmod{7}$. Quel est le reste dans la division euclidienne de 2^{2009} par 7?
- 3. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

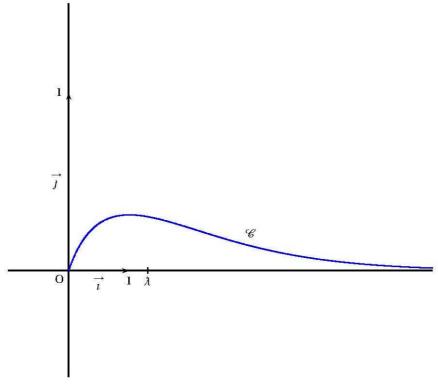
Soient a et b deux nombres entiers naturels inférieurs ou égaux à 9 avec $a \neq 0$.

On considère le nombre $N = a \times 10^3 + b$. On rappelle qu'en base 10 ce nombre s'écrit sous la forme $N = \overline{a00b}$.

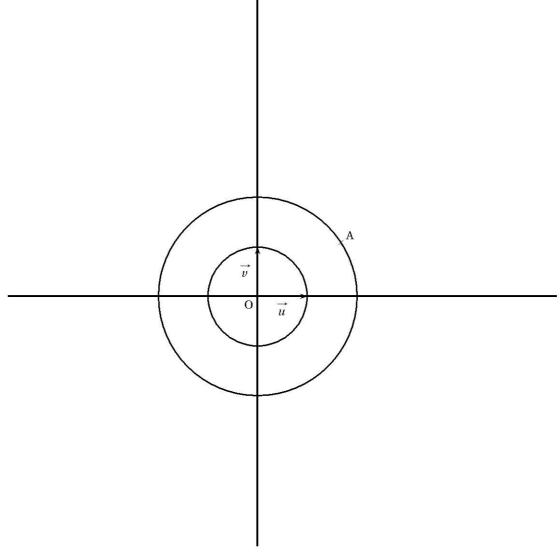
On se propose de déterminer parmi ces nombres entiers naturels N ceux qui sont divisibles par 7.

- a. Vérifier que $10^3 \equiv -1 \pmod{7}$.
- **b.** En déduire tous les nombres entiers N cherchés.

ANNEXE 1
Exercice 2
(À rendre avec la copie)



ANNEXE 2 Exercice 4 Candidats n'ayant pas suivi l'enseignement de spécialité



CORRECTION

EXERCICE 1 4 points Commun à tous les candidats

1. *a*.
$$v_{n+1} = u_{n+1} - 6 = \frac{1}{3}u_n + 4 - 6 = \frac{1}{3}u_n - 2$$
 donc $v_{n+1} = \frac{1}{3}(u_n - 6) = \frac{1}{3}v_n$

 (v_n) est une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $v_0 = u_0 - 6 = -5$ donc $v_n = v_0 q^n = -5 \left(\frac{1}{3}\right)^n$.

b.
$$v_n = u_n - 6 \text{ donc } u_n = v_n + 6 = -5 \left(\frac{1}{3}\right)^n + 6.$$

c.
$$\sin -1 < q < 1$$
 alors $\lim_{n \to +\infty} q^n = 0$ donc $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$ donc $\lim_{n \to +\infty} u_n = 6$.

2. a.
$$10 w_{10} = 11 w_9 + 1 \text{ soit } 10 w_{10} = 11 \times 19 + 1 = 210 \text{ donc } w_{10} = 21.$$

b. Montrons par récurrence que pour tout
$$n$$
 de \mathbb{N} , $w_n = 2 n + 1$.

Vérification : si n = 0, $w_0 = 1 = 2 \times 0 + 1$ donc la propriété est vraie pour n = 0

Montrons que pour tout n, si $w_n = 2n + 1$ alors $w_{n+1} = 2(n+1) + 1 = 2n + 3$

$$n w_n = (n+1) w_{n-1} + 1 \operatorname{donc}(n+1) w_{n+1} = (n+2) w_n + 1 \operatorname{soit}(n+1) w_{n+1} = (n+2) (2 n+1) + 1 (n+1) w_{n+1} = 2 n^2 + 5 n + 3$$

or
$$(2n+3)(n+1) = 2n^2 + 5n + 3$$
 donc $(n+1)w_{n+1} = (2n+3)(n+1)$

$$n \in \mathbb{N} \operatorname{donc} n + 1 \neq 0 \operatorname{donc} w_{n+1} = 2n + 3$$

La propriété est héréditaire donc vraie pour tout n de \mathbb{N} .

La suite (w_n) est donc une suite arithmétique de raison 2 de premier terme $w_0 = 1$.

$$w_{2.009} = 2 \times 2.009 + 1 = 4.019$$

EXERCICE 2 6 points Commun à tous les candidats

PARTIE I

1.
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ donc } \lim_{x \to +\infty} x e^{-x} = 0 \text{ soit } \lim_{x \to +\infty} 1 + x e^{-x} = 1$$

$$\lim_{X \to 1} \ln X = \ln 1 = 0 \text{ donc } \lim_{x \to +\infty} f(x) = 0.$$

2. Soit
$$u(x) = x$$
 et $v(x) = e^{-x}$ alors $u'(x) = 1$ et $v'(x) = -e^{-x}$

La dérivée de
$$x \to x$$
 e^{-x} est donc e^{-x} - x e^{-x} = $(1-x)$ e^{-x} donc $f'(x) = \frac{e^{-x} (1-x)}{1+xe^{-x}}$

La fonction exponentielle est strictement positive sur \mathbb{R} , pour tout nombre réel positif x, 1 + x e^{-x} ≥ 1 donc le signe de f'(x) est celui de 1 - x.

3. $1-x>0 \Leftrightarrow x<1$ d'où le tableau de variation de f

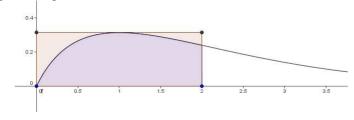
•	1000	ration as j			
	х	0	1		+∞
	f'(x)	+	0	-	
	f	0	$\ln{(1+e^{-1})}$	1	0

PARTIE II

1. Première méthode

a. f est positive sur $[0; +\infty[$ et $\lambda > 0$ donc $A(\lambda)$ représente l'aire de la partie de plan comprise entre l'axe des abscisses, la courbe de f et les droites d'équations x = 0 et $x = \lambda$.

Exemple : avec $\lambda = 2$, $A(\lambda)$ est représentée par l'aire mauve.



b. f admet sur $[0; +\infty[$ un maximum en 1, donc pour tout $x \ge 0, f(x) \le f(1)$

f est continue sur $[0; +\infty[$ et $\lambda > 0$ donc $\int_0^{\lambda} f(x) dx \le \int_0^{\lambda} f(1) dx$ soit $A(\lambda) \le f(1) \int_0^{\lambda} dx$ donc pour tout λ strictement positif, $A(\lambda) \le \lambda f(1)$.

2. Deuxième méthode

a. Soit
$$u'(x) = e^{-x}$$
 $u(x) = -e^{-x}$ $v(x) = x$ $v'(x) = 1$

$$donc \int_{0}^{\lambda} x e^{-x} dx = \left[-x e^{-x} \right]_{0}^{\lambda} - \int_{0}^{\lambda} -e^{-x} dx$$

$$\int_{0}^{\lambda} x e^{-x} dx = -\lambda e^{-\lambda} - \left[e^{-x} \right]_{0}^{\lambda}$$

$$\int_{0}^{\lambda} x e^{-x} dx = -\lambda e^{-\lambda} - e^{-\lambda} + 1.$$

b. La fonction exponentielle est strictement positive sur \mathbb{R} , donc pour tout $x \ge 0$, $x e^{-x} \ge 0$ donc $\ln (1 + x e^{-x}) \le x e^{-x}$ f est continue sur $[0; +\infty[$ et $\lambda > 0$ donc $\int_0^{\lambda} f(x) dx \le \int_0^{\lambda} x e^{-x} dx$ soit $A(\lambda) \le -\lambda e^{-\lambda} - e^{-\lambda} + 1$.

3. Application numérique

Si
$$\lambda = 5$$
, Méthode 1 : A(5) $\leq 5 f(1)$ soit A(λ) $\leq 1,57$
Méthode 2 : A(5) ≤ -5 e⁻⁵ - e⁻⁵ + 1 soit A(λ) $\leq 0,96$

La méthode 2 donne le meilleur majorant dans le cas où $\lambda = 5$.

EXERCICE 3 5 points Commun à tous les candidats

I.
$$\binom{n-1}{p-1} + \binom{n-1}{p} = \frac{(n-1)!}{(p-1)!(n-p)!} + \frac{(n-1)!}{p!(n-p-1)!}$$

$$(p-1)!(n-p)! = 1 \times 2 \times ... \times (p-1) \times 1 \times 2 \times ... \times (n-p)$$

$$p!(n-p-1)! = 1 \times 2 \times ... \times p \times 1 \times 2 \times ... (n-p-1)$$

Pour réduire au même dénominateur les deux fractions, il suffit de multiplier le premier dénominateur par p et le second par n-p $(p-1)!(n-p)! \times p = 1 \times 2 \times ... \times (p-1) \times p \times 1 \times 2 \times ... \times (n-p) = p! \times (n-p)!$ $p!(n-p-1)! \times (n-p) = 1 \times 2 \times ... \times p \times 1 \times 2 \times ... \times (n-p-1) \times (n-p) = p! \times (n-p)!$

$$\binom{n-1}{p-1} + \binom{n-1}{p} = \frac{(n-1)! \times p}{(p-1)!(n-p)! \times p} + \frac{(n-1)! \times (n-p)}{p!(n-p-1)! \times (n-p)}$$

$$\binom{n-1}{p-1} + \binom{n-1}{p} = \frac{(n-1)! \times p + (n-1)! \times (n-p)}{p!(n-p)!} \Leftrightarrow \binom{n-1}{p-1} + \binom{n-1}{p} = \frac{(n-1)! \times p + (n-1)! \times (n-p)}{p!(n-p)!}$$

$$\binom{n-1}{p-1} + \binom{n-1}{p} = \frac{(n-1)! \times [p + (n-p)]}{p!(n-p)!} = \frac{n!}{p!(n-p)!} \operatorname{donc} \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$$

II. 1. a. On a équiprobabilité des événements élémentaires donc $p(A) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$

Le nombre de cas possibles est $\binom{10}{2} = 45$; le nombre de cas favorables est $\binom{7}{2} = 21$ donc $p(A) = \frac{21}{45} = \frac{7}{15}$.

- **b.** 4 jetons blancs portent un numéro impair (1; 3; 5; 7) et 2 jetons noirs portent un numéro impair (1; 3) donc 6 jetons portent un numéro impair. Le nombre de cas favorables est $\binom{6}{2} = 15$ donc $p(B) = \frac{15}{45} = \frac{1}{3}$.
- c. A \cap B est l'événement : « « obtenir deux jetons blancs portant des numéros impairs ».

Le nombre de cas favorables est $\binom{4}{2} = 6$ donc $p(A \cap B) = \frac{6}{45} = \frac{2}{15}$.

 $p(A) \times p(B) = \frac{7}{15} \times \frac{1}{3} \neq \frac{2}{15}$ donc A et B ne sont pas indépendants.

2. Soit X la variable aléatoire prenant pour valeur le nombre de jetons blancs obtenus lors de ce tirage simultané.

a.b.
$$p(X = 0) = \frac{\binom{3}{2}}{45} = \frac{1}{15} \text{ et } p(X = 1) = \frac{\binom{3}{1} \times \binom{7}{1}}{45} = \frac{7}{15}$$

х	0	1	2	Total
p(X = x)	$\frac{1}{15}$	$\frac{7}{15}$	$\frac{7}{15}$	1
x p(X = x)	0	$\frac{7}{15}$	$\frac{14}{15}$	$\frac{21}{15} = \frac{7}{5}$

donc $E(X) = \frac{7}{5}$.

EXERCICE 4 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

1.
$$a$$
. Soit z_1 l'affixe de M_1 , $z_1 = \frac{1}{z}$ donc $z z_1 = 1$ $|z z_1| = 1$ et $arg(z z_1) = 0$ à 2π près soit $|z| |z_1| = 1$ et $arg(z) + arg(z) = 0$ à 2π près. donc $OM \times OM_1 = 1$ et $(\vec{u}, \overrightarrow{OM_1}) + (\vec{u}, \overrightarrow{OM}) = 0$ à 2π près. soit $OM \times OM_1 = 1$ et $(\vec{u}, \overrightarrow{OM_1}) = -(\vec{u}, \overrightarrow{OM})$ à 2π près.

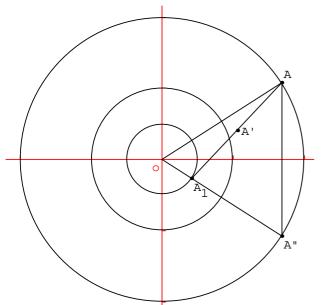
b. Deux constructions sont possibles:

Construction 1

Construire le point A" symétrique de A par rapport à l'axe des réels, alors OA = OA'' = 2 et $(\vec{u}, \overrightarrow{OA''}) = -(\vec{u}, \overrightarrow{OA})$ à 2π près.

puis construire le cercle de centre O de rayon $\frac{1}{2}$

Le segment [OA"] coupe ce cercle en A1 tel que $OA \times OA_1 = 1$ et $(\vec{u}, \overrightarrow{OA_1}) = -(\vec{u}, \overrightarrow{OA})$ à 2π près. A' est le milieu de [AA₁].



Construction 2

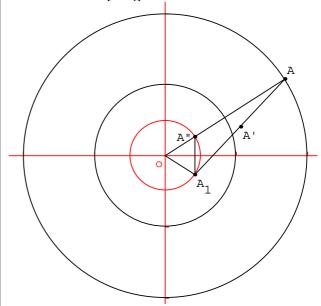
Construire le cercle de centre O de rayon 0,5

Construire le point A" intersection de ce cercle et du rayon OA alors OA" = 0,5 et $(\vec{u}, \overrightarrow{OA}") = (\vec{u}, \overrightarrow{OA})$ à 2 π près.

puis construire le symétrique de A" par rapport à l'axe des réels, alors $OA_1 = OA'' = 0.5$ et $(\vec{u}, \overrightarrow{OA_1}) = -(\vec{u}, \overrightarrow{OA''})$ à 2π près

 $OA \times OA_1 = 1$ et $(\vec{u}, \overrightarrow{OA_1}) = -(\vec{u}, \overrightarrow{OA})$ à 2π près.

A' est le milieu de [AA₁].

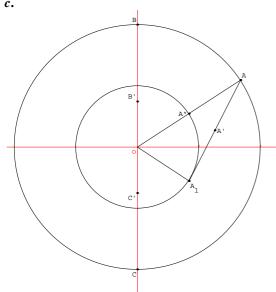


2. a. M₁ a pour affixe z_1 et M pour affixe z donc le milieu M' de [MM₁] a pour affixe $z' = \frac{1}{2}(z + z_1)$ or $z_1 = \frac{1}{z_1}(z + z_2)$

donc $z' = \frac{1}{2} \left(z + \frac{1}{z} \right)$.

B' a pour affixe $b' = \frac{1}{2} \left(2i + \frac{1}{2i} \right) = \frac{1}{2} \left(2i - \frac{i}{2} \right) = \frac{3}{4}i$; C' a pour affixe $c' = \frac{1}{2} \left(-2i + \frac{1}{-2i} \right) = \frac{1}{2} \left(-2i + \frac{i}{2} \right) = -\frac{3}{4}i$

c.



3.
$$M = M' \Leftrightarrow z = \frac{1}{2} \left(z + \frac{1}{z} \right) \Leftrightarrow 2 \ z = z + \frac{1}{z} \Leftrightarrow z = \frac{1}{z}$$

$$\Leftrightarrow z^2 = 1 \Leftrightarrow z = -1 \text{ ou } z = 1$$

Si le point M appartient au cercle de centre O et de rayon 1 alors il existe un réel θ tel que son affixe soit $\cos \theta + i \sin \theta$ ou encore $e^{i\theta}$ donc $\frac{1}{2}$

 $e^{-i\theta}$ donc $z' = \frac{1}{2}\left(z + \frac{1}{z}\right) = \frac{1}{2}\left(e^{i\theta} + e^{-i\theta}\right) = \cos\theta$ donc M' est un point de

 $-1 \le \cos \theta \le 1$ donc M' appartient au segment [KL] où K et L sont les points d'affixes respectives - 1 et 1.

Autre démonstration possible : M appartient au cercle T de centre O de rayon 1 donc M_1 est tel que $OM_1 = 1$ et $(\vec{u}, \overrightarrow{OM_1}) = -(\vec{u}, \overrightarrow{OM})$ à 2π près donc M1 est le point du cercle T symétrique de M par rapport à l'axe des réels donc le milieu M' de [MM₁] est un point de l'axe des réels de même abscisse que M situé à l'intérieur du cercle T donc M' appartient au segment [KL] où K et L sont les points d'affixes respectives -1 et 1.

EXERCICE 4 5 points Candidats ayant suivi l'enseignement de spécialité

- **1.** *a*. $8 \times 1 5 \times 1 = 5$ donc 8x 5y = 3 admet pour solution particulière x = 1 et y = 1 Par différence membre à membre : 8(x 1) 5(y 1) = 0 soit 8(x 1) = 5(y 1) 8 divise 5(y 1) et 8 est premier avec 5 donc 8 divise y 1, il existe un entier relatif k tel que y 1 = 8k En remplaçant y 1 par y 1
- Les solutions de l'équation (E) sont les entiers vérifiant x = 5 k + 1 et y = 8 k + 1 avec $k \in \mathbb{Z}$
- **b.** S'il existe un couple (p, q) de nombres entiers vérifiant m = 8 p + 1 et m = 5 q + 4 alors 8 p + 1 = 5 q + 4 soit 8 p 5 q = 3 donc le couple (p, q) est solution de l'équation (E), donc il existe un entier relatif k tel que p = 5 k + 1 et q = 8 k + 1 donc en remplaçant m = 40 k + 5 + 4 = 40 k + 9 donc m = 9 (modulo 40).
- c. m = 40 k + 9 et $m \ge 2000$ donc $40 k \ge 2000 9$, soit $k \ge 50$ donc m = 2009
- **2.** *a*. $2^3 = 8 = 7 + 1$ donc $2^3 \equiv 1$ (modulo 7) donc pour tout entier naturel k, $2^{3k} \equiv 1$ (modulo 7) $2\ 009 = 3 \times 669 + 2$ donc $2^{2\ 009} = 2^{3 \times 669} \times 2^2$ or $2^{3k} \equiv 1$ (modulo 7) donc $2^{3 \times 669} \equiv 1$ (modulo 7) donc $2^{2\ 009} \equiv 2^2$ (modulo 7) Le reste dans la division euclidienne de $2^{2\ 009}$ par 7 est 4
- **3.** *a*. 10 = 7 + 3 donc $10 \equiv 3$ (modulo 7) donc $10^3 \equiv 3^3$ (modulo 7) $3^3 = 27 = 4 \times 7 1$ donc $3^3 \equiv -1$ (modulo 7) donc $10^3 \equiv -1$ (modulo 7).
- **b.** $N = a \times 10^3 + b \text{ donc } N \equiv -a + b \text{ (modulo 7)}$ N est divisible par 7 si et seulement si $N \equiv 0 \text{ (modulo 7)}$ soit si et seulement si $a \equiv b \text{ (modulo 7)}$ $1 \le a \le 9 \text{ donc } N \in \{1\ 001\ ; 2\ 002\ ; 3\ 003\ ; 4\ 004\ ; 5\ 005\ ; 6\ 006\ ; 7\ 007\ ; 8\ 008\ ; 9\ 009\}$